Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Disease Surveillance ; 37(4):445-452, 2022.
Article in Chinese | CAB Abstracts | ID: covidwho-1994243

ABSTRACT

Immunobiotics, a group of probiotics, have the effect of anti-infection by regulating immune function, which can be added in in foods or used to make adjuvants or medicines (biologics). Immunobiotics can stimulate the mucosal immune system of the body, regulate innate and acquired immunity and exert non-specific anti-microbial (bacterial and viral) infection effects through oral, nasal mucosa, sublingual and other routes, but the immune regulation function of immunobiotics is species-specific. Oral administration of Lactobacillus plantarum GUANKE stimulated the increase and maintenance of SARS-CoV-2 neutralization antibodies in mice even 6 months after immunization. When L. plantarum GUANKE was given immediately after SARS-CoV-2 vaccination, the level of SARS-COV-2 specific neutralizing antibody in bronchoalveolar lavage increased by 8 times in mice, which improved the local and systematic cellular immune response to SARS-CoV-2 of mice. Clinical studies have found that immunobiotics have the auxiliary effect in the treatment of COVID-19 by mitigating the symptoms and increase the level of SARS-CoV-2 specific antibody of the patients. It is necessary to conduct research and evaluation for the appropriate guideline of immunobiotics use as erly as possible to provide a new option for the prevention and control of COVID-19.

3.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-952553.v1

ABSTRACT

The recurrent outbreak of coronaviruses and variants underscores the need for broadly reactive antivirals and vaccines. Here, a novel broad-spectrum human antibody named 76E1 was isolated from a COVID-19 convalescent patient and showed broad neutralization activity against multiple α- and β-coronaviruses, including the SARS-CoV-2 variants and also exhibited the binding breath to peptides containing the epitope from γ- and δ- coronaviruses. 76E1 cross-protects mice from SARS-CoV-2 and HCoV-OC43 infection in both prophylactic and treatment models. The epitope including the fusion peptide and S2’ cleavage site recognized by 76E1 was significantly conserved among α-, β-, γ- and δ- coronaviruses. We uncovered a novel mechanism of antibody neutralization that the epitope of 76E1 was proportionally less exposed in the prefusion trimeric structure of spike protein but could be unmasked by binding to the receptor ACE2. Once the epitope exposed, 76E1 inhibited S2’ cleavage, thus blocked the membrane fusion process. Our data demonstrate a key epitope targeted by broadly-neutralizing antibodies and will guide next-generation epitope-based pan-coronavirus vaccine design.


Subject(s)
COVID-19 , Infections
4.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-497595.v1

ABSTRACT

The receptor-binding domain (RBD) variants of SARS-CoV-2 could impair antibody-mediated neutralization of the virus by host immunity; thus, prospective surveillance for such antibody escape mutants is urgently needed. Here, we comprehensively profiled four antigenic sites of the RBD and mapped the binding hot spots for a panel of RBD-specific monoclonal antibodies isolated from COVID-19 convalescents, especially dominant VH3-53/3–66 antibodies, which are valuable indicators of antigenic changes in the RBD. We further demonstrated that several natural mutations, namely, K417N, F486L, N450K, L452R, E484K, F490S and R346S, significantly decreased the neutralizing activity of multiple human monoclonal antibodies and of human convalescent plasma obtained in the early stage of the COVID-19 pandemic. Of note, among the natural escape mutations, L452R enhanced ACE2 binding affinity, indicating that it potentially increased virulence. Overall, the in-depth maps may have far-reaching value for surveillance of SARS-CoV-2 immune escape variants and guidance of vaccine design.


Subject(s)
COVID-19
5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.02.09.430410

ABSTRACT

Although co-expression of CD38 and HLA-DR on CD8 + T cells reflects activation during influenza, SARS-CoV-2, Dengue, Ebola and HIV-1 viral infections, high and prolonged CD38 + HLA-DR + expression can be associated with severe and fatal disease outcomes. As the expression of CD38 + HLA-DR + is poorly understood, we used mouse models of influenza A/H7N9, A/H3N2 and A/H1N1 infection to investigate the mechanisms underpinning CD38 + MHC-II + phenotype on CD8 + T-cells. Our analysis of influenza-specific immunodominant D b NP 366 +CD8 + T-cell responses showed that CD38 + MHC-II + co-expression was detected on both virus-specific and bystander CD8 + T-cells, with increased numbers of both CD38 + MHC-II + CD8 + T-cell populations observed in the respiratory tract during severe infection. To understand the mechanisms underlying CD38 and MHC-II expression, we also used adoptively-transferred transgenic OT-I CD8 + T-cells recognising the ovalbumin-derived K b SIINFEKL epitope and A/H1N1-SIINKEKL infection. Strikingly, we found that OT-I cells adoptively-transferred into MHC-II −/− mice did not display MHC-II after influenza virus infection, suggesting that MHC-II was acquired via trogocytosis in wild-type mice. Additionally, detection of CD19 on CD38 + MHC II + OT-I cells further supports that MHC-II was acquired by trogocytosis, at least partially, sourced from B-cells. Our results also revealed that co-expression of CD38 + MHC II + on CD8 + T-cells was needed for the optimal recall ability following secondary viral challenge. Overall, our study provides evidence that both virus-specific and bystander CD38 + MHC-II + CD8 + T-cells are recruited to the site of infection during severe disease, and that MHC-II expression occurs via trogocytosis from antigen-presenting cells. Our findings also highlight the importance of the CD38 + MHC II + phenotype for CD8 + T-cell memory establishment and recall. Summary Co-expression of CD38 and MHC-II on CD8 + T cells is recognized as a classical hallmark of activation during viral infections. High and prolonged CD38 + HLA-DR + expression, however, can be associated with severe disease outcomes and the mechanisms are unclear. Using our established influenza wild-type and transgenic mouse models, we determined how disease severity affected the activation of influenza-specific CD38 + MHC-II + CD8 + T cell responses in vivo and the antigenic determinants that drive their activation and expansion. Overall, our study provides evidence that both virus-specific and bystander CD38 + MHC-II + CD8 + T-cells are recruited to the site of infection during severe disease, and that MHC-II expression occurs, at least in part, via trogocytosis from antigen-presenting cells. Our findings also highlight the importance of the CD38 + MHC II + phenotype for CD8 + T-cell memory establishment and recall.


Subject(s)
Influenza, Human , HIV Infections
6.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.04.361576

ABSTRACT

The COVID-19 pandemic is a widespread and deadly public health crisis. The pathogen SARS-CoV-2 replicates in the lower respiratory tract and causes fatal pneumonia. Although tremendous efforts have been put into investigating the pathogeny of SARS-CoV-2, the underlying mechanism of how SARS-CoV-2 interacts with its host is largely unexplored. Here, by comparing the genomic sequences of SARS-CoV-2 and human, we identified five fully conserved elements in SARS-CoV-2 genome, which were termed as "human identical sequences (HIS)". HIS are also recognized in both SARS-CoV and MERS-CoV genome. Meanwhile, HIS-SARS-CoV-2 are highly conserved in the primate. Mechanically, HIS-SARS-CoV-2 RNA directly binds to the targeted loci in human genome and further interacts with host enhancers to activate the expression of adjacent and distant genes, including cytokines gene and angiotensin converting enzyme II (ACE2), a well-known cell entry receptor of SARS-CoV-2, and hyaluronan synthase 2 (HAS2), which further increases hyaluronan formation. Noteworthily, hyaluronan level in plasma of COVID-19 patients is tightly correlated with severity and high risk for acute respiratory distress syndrome (ARDS) and may act as a predictor for the progression of COVID-19. HIS antagomirs, which downregulate hyaluronan level effectively, and 4-Methylumbelliferone (MU), an inhibitor of hyaluronan synthesis, are potential drugs to relieve the ARDS related ground-glass pattern in lung for COVID-19 treatment. Our results revealed that unprecedented HIS elements of SARS-CoV-2 contribute to the cytokine storm and ARDS in COVID-19 patients. Thus, blocking HIS-involved activating processes or hyaluronan synthesis directly by 4-MU may be effective strategies to alleviate COVID-19 progression.


Subject(s)
Respiratory Distress Syndrome , Pneumonia , Severe Acute Respiratory Syndrome , Dissociative Identity Disorder , COVID-19
7.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.09.287508

ABSTRACT

Host cellular receptors are key determinants of virus tropism and pathogenesis. Virus utilizes multiple receptors for attachment, entry, or specific host responses. However, other than ACE2, little is known about SARS-CoV-2 receptors. Furthermore, ACE2 cannot easily interpret the multi-organ tropisms of SARS-CoV-2 nor the clinical differences between SARS-CoV-2 and SARS-CoV. To identify host cell receptors involved in SARS-CoV-2 interactions, we performed genomic receptor profiling to screen almost all human membrane proteins, with SARS-CoV-2 capsid spike (S) protein as the target. Twelve receptors were identified, including ACE2. Most receptors bind at least two domains on S protein, the receptor-binding-domain (RBD) and the N-terminal-domain (NTD), suggesting both are critical for virus-host interaction. Ectopic expression of ASGR1 or KREMEN1 is sufficient to enable entry of SARS-CoV-2, but not SARS-CoV and MERS-CoV. Analyzing single-cell transcriptome profiles from COVID-19 patients revealed that virus susceptibility in airway epithelial ciliated and secretory cells and immune macrophages highly correlates with expression of ACE2, KREMEN1 and ASGR1 respectively, and ACE2/ASGR1/KREMEN1 (ASK) together displayed a much better correlation than any individual receptor. Based on modeling of systemic SARS-CoV-2 host interactions through S receptors, we revealed ASK correlation with SARS-CoV-2 multi-organ tropism and provided potential explanations for various COVID-19 symptoms. Our study identified a panel of SARS-CoV-2 receptors with diverse binding properties, biological functions, and clinical correlations or implications, including ASGR1 and KREMEN1 as the alternative entry receptors, providing insights into critical interactions of SARS-CoV-2 with host, as well as a useful resource and potential drug targets for COVID-19 investigation.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19 , Virus Diseases
8.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.09.142372

ABSTRACT

The spread of SARS-CoV-2 virus in the ongoing global pandemics has led to infections of millions of people and losses of many lives. The rapid, accurate and convenient SARS-CoV-2 virus detection is crucial for controlling and stopping the pandemics. Diagnosis of patients in the early stage infection are so far limited to viral nucleic acid or antigen detection in human nasopharyngeal swab or saliva samples. Here we developed a method for rapid and direct optical measurement of SARS-CoV-2 virus particles in one step nearly without any sample preparation using a spike protein specific nanoplasmonic resonance sensor. We demonstrate that we can detect as few as 30 virus particles in one step within 15 minutes and can quantify the virus concentration linearly in the range of 103 vp/ml to 106 vp/ml. Measurements shown on both generic microplate reader and a handheld smartphone connected device suggest that our low-cost and rapid detection method may be adopted quickly under both regular clinical environment and resource-limited settings.

9.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.05.19.104117

ABSTRACT

The coronavirus induced disease 19 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a worldwide threat to human lives, and neutralizing antibodies present a great therapeutic potential in curing affected patients. We purified more than one thousand memory B cells specific to SARS-CoV-2 S1 or RBD (receptor binding domain) antigens from 11 convalescent COVID-19 patients, and a total of 729 naturally paired heavy and light chain fragments were obtained by single B cell cloning technology. Among these, 178 recombinant monoclonal antibodies were tested positive for antigen binding, and the top 13 binders with Kd below 0.5 nM are all RBD binders. Importantly, all these 13 antibodies could block pseudoviral entry into HEK293T cells overexpressing ACE2, with the best ones showing IC50s around 2-3 nM. We further identified 8 neutralizing antibodies against authentic virus with IC50s within 10 nM. Among these, 414-1 blocked authentic viral entry at IC50 of 1.75 nM and in combination with 105-38 could achieve IC50 as low as 0.45 nM. Meanwhile, we also found that 3 antibodies could cross-react with the SARS-CoV spike protein. Altogether, our study provided a panel of potent human neutralizing antibodies for COVID19 as therapeutics candidates for further development.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
10.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-22629.v2

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), spreads rapidly and has attracted worldwide attention.Methods: To improve the forecast accuracy and investigate the spread of SARS-CoV-2, we constructed four mathematical models to numerically estimate the spread of SARS-CoV-2 and the efficacy of eradication strategies.Results: Using the Susceptible-Exposed-Infected-Removed (SEIR) model, and including measures such as city closures and extended leave policies implemented by the Chinese government that effectively reduced the β value, we estimated that the β value and basic transmission number, R0, of SARS-CoV-2 was 0.476/6.66 in Wuhan, 0.359/5.03 in Korea, and 0.400/5.60 in Italy. Considering medicine and vaccines, an advanced model demonstrated that the emergence of vaccines would greatly slow the spread of the virus. Our model predicted that 100,000 people would become infected assuming that the isolation rate α in Wuhan was 0.30. If quarantine measures were taken from March 10, 2020, and the quarantine rate of α was also 0.3, then the final number of infected people was predicted to be 11,426 in South Korea and 147,142 in Italy.Conclusions: Our mathematical models indicate that SARS-CoV-2 eradication depends on systematic planning, effective hospital isolation, and SARS-CoV-2 vaccination, and some measures including city closures and leave policies should be implemented to ensure SARS-CoV-2 eradication.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Hallucinations
SELECTION OF CITATIONS
SEARCH DETAIL